- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Abdeljawad, Fadi (1)
-
Battaile, Corbett (1)
-
Garcia-Cardona, Cristina (1)
-
Holm, Elizabeth A. (1)
-
Homer, Eric R. (1)
-
Liu, Dehao (1)
-
Madison, Jon (1)
-
Mitchell, John A. (1)
-
Plimpton, Steven J. (1)
-
Rodgers, Theron (1)
-
Rodgers, Theron M. (1)
-
Thompson, Aidan P. (1)
-
Tikare, Veena (1)
-
Tran, Anh (1)
-
Wang, Zihan (1)
-
Webb, Ed (1)
-
Xu, Hongyi (1)
-
Xu, Leidong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Reconstructing 3D granular microstructures within volumes of arbitrary geometries from limited 2D image data is crucial for predicting the material properties, as well as performances of structural components accounting for material microstructural effects. We present a novel generative learning framework that enables exascale reconstruction of granular microstructures within complex 3D geometric volumes. Building upon existing transfer learning techniques using pre-trained convolutional neural networks (CNN), we introduce several key innovations to overcome the difficulties inherent in arbitrary geometries. Our framework incorporates periodic boundary conditions using circular padding techniques, ensuring continuity and representativeness of the reconstructed microstructures. We also introduce a novel seamless transition reconstruction (STR) method that creates statistically equivalent transition zones to integrate multiple pre-existing 3D microstructure volumes. Based on STR, we propose a cost-effective strategy for reconstructing microstructures within complex geometric volumes, minimizing computational waste. Validation through numerical experiments using kinetic Monte Carlo simulations demonstrates accurate reproduction of grain statistics, including grain size distributions and morphology. A case study involving the reconstruction of a 4-blade propeller microstructure illustrates the method’s capability to efficiently handle complex geometries. The proposed framework significantly reduces computational demands while maintaining high reconstruction quality, paving the way for scalable microstructure reconstruction in materials design and analysis.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Mitchell, John A.; Abdeljawad, Fadi; Battaile, Corbett; Garcia-Cardona, Cristina; Holm, Elizabeth A.; Homer, Eric R.; Madison, Jon; Rodgers, Theron M.; Thompson, Aidan P.; Tikare, Veena; et al (, Modelling and Simulation in Materials Science and Engineering)Abstract SPPARKS is an open-source parallel simulation code for developing and running various kinds of on-lattice Monte Carlo models at the atomic or meso scales. It can be used to study the properties of solid-state materials as well as model their dynamic evolution during processing. The modular nature of the code allows new models and diagnostic computations to be added without modification to its core functionality, including its parallel algorithms. A variety of models for microstructural evolution (grain growth), solid-state diffusion, thin film deposition, and additive manufacturing (AM) processes are included in the code. SPPARKS can also be used to implement grid-based algorithms such as phase field or cellular automata models, to run either in tandem with a Monte Carlo method or independently. For very large systems such as AM applications, the Stitch I/O library is included, which enables only a small portion of a huge system to be resident in memory. In this paper we describe SPPARKS and its parallel algorithms and performance, explain how new Monte Carlo models can be added, and highlight a variety of applications which have been developed within the code.more » « less
An official website of the United States government
